Abstract
Abstract. The recent high rate of environmental degradation due to unsustainable use of water and other natural resources and mismanagement, is, in many cases, the result of a dominant sectoral approach, limited communication between different users and agencies, and lack of knowledge transfer between different disciplines, and especially lack of dialogue between environmental scientists and engineers. There is no doubt that the genuine improvement of human well-being has to be based on understanding the complexity of interactions between abiotic, biotic and socio-economic systems. The major drivers of biogeosphere evolution and function have been the cycles of water and nutrients in a complex array of differing climates and catchment geomorphologies. In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Thus the principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences. Examples from UNESCO IHP VII show how the integration of these will not only increase the efficiency of measures to harmonize ecosystem potentials with societal needs, but also significantly reduce the costs of sustainable environmental management.
Highlights
In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science
The principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences
Examples from UNESCO IHP VII show how the integration of these will increase the efficiency of measures to harmonize ecosystem potentials with societal needs, and significantly reduce the costs of sustainable environmental management
Summary
In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Hydrological Sciences and Water Security: Past, Present and Future (Proceedings of the 11th Kovacs Colloquium, Paris, France, June 2014).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Association of Hydrological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.