Abstract

Carbon dioxide sequestration by a pH-swing carbonation process was considered in this work. A multi-step aqueous process is described for the fractional precipitation of magnesium carbonate and other minerals in an aqueous system at room temperature and atmospheric pressure. With the aim to achieve higher purity and deliver more valuable mineral products, the process was split into four steps. The first step consists of Mg leaching from the magnesium silicate in a stirred vessel using 1M HCl at 80°C, followed by a three step precipitation in reactors in sequence to remove Fe(OH)3, then Fe(OH)2 and other divalent ions, and finally MgCO3 nucleation and growth. Hydrated magnesium carbonate [MgCO3∙3H2O, nesquehonite] crystals were confirmed using X-ray diffraction (XRD) as final products. The optimal pH of precipitation reactors based on the maximum solid purity and production was determined by carrying out detailed mass balance. The maximum productivity and highest purity for nesquehonite were found to be dependent on pH values for the two last steps. The results also demonstrated that the process is optimized at pH9 and 10 for the second and third step of precipitation, respectively. The highest carbonation efficiency expressed as the conversion of Mg ions to magnesium carbonate reached 82.5 wt %. The maximum magnesium content in the final product was 99.21 wt % of MgO when the second precipitation reactor pH was equal to 9. This experimental study demonstrates that carbon dioxide sequestration requires at least 3.74 times the weight of ore to provide the Mg for mineral production. This confirms the possibility to use this process route for CO2 mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.