Abstract
AbstractIn order to reduce the variation in a manufacturing process, traditional statistical process control (SPC) techniques are the most frequently used tools in monitoring engineering process control (EPC)‐controlled processes for detecting assignable cause process variation. Even though application of SPC with EPC can successfully detect time points when abnormalities occur during process, their combination can also cause an increased occurrence of false alarms when autocorrelation is present in the process. In this paper, we propose an independent component analysis‐based signal extraction technique with classification and regression tree approach to identify disturbance levels in the correlated process parameters. For comparison, traditional cumulative sum (CUSUM) chart was constructed to evaluate the identifying capability of the proposed approach. The experimental results show that the proposed method outperforms CUSUM control chart in most instances. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.