Abstract

Commercial plants for spent nuclear fuel reprocessing rely on the Plutonium Uranium Extraction (PUREX) process, based on traditional liquid–liquid extraction technologies. In this paper, an alternative flowsheet for spent nuclear fuel reprocessing is proposed, based on small-scale extractors to overcome some of the issues related to the conventional technologies, such as solvent degradation, size and nuclear criticality control. The main goal of the process is to preclude the risk of nuclear proliferation, hence a mixed uranium/plutonium oxide is produced instead of pure plutonium.A superstructure optimisation based framework has been used to identify a process with several benefits over the conventional process. Novel flow configurations and organic solvent composition have been investigated. A large number of components and chemical reactions are included in the framework. The resulting model is a mixed integer nonlinear optimisation problem, implemented in the General Algebraic Modeling System (GAMS).The most promising flowsheet identified is more cost effective than the conventional one. Furthermore, advantages in terms of safety and separation efficiency have been achieved. It was found that increasing the inner diameter of the small channels up to 2.5 mm, as well as increasing the tributyl phosphate fraction in the organic solvent, are advantageous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.