Abstract

Anhydrous zinc acetate was used as a low-cost catalyst for the urea alcoholysis to produce dimethyl carbonate (DMC). Important operating variables including reaction time, temperature and catalyst amount were optimized using response surface methodology. Optimization was assessed through two different approaches. In the first approach, only DMC yield was maximized. N-methyl methyl carbamate (NMMC, the unfavorable byproduct) yield was minimized along with maximizing DMC yield in the second approach. Sobol sensitivity analysis uncovered that reaction temperature and the binary interaction of reaction temperature/catalyst amount were the most influential parameters on DMC yield with 57.01% and 29.17% impacts, respectively. Moreover, temperature and reaction time with 61.13% and 19.74% impacts were the most effective variables on NMMC yield. The multi-objective optimization results were more suitable for application in continuous production of DMC due to avoiding NMMC production. A modified continuous process was also proposed for DMC production. The main advantage of the preposed process was immediate extraction out of DMC from the reaction zone. To investigate the possible reaction mechanism, the Binding Energies (BEs) of the reactants were assessed using Density-Functional-Theory. Results illustrated that the highest BE values belong to the interaction of zinc with the nitrogen of methyl carbamate (MC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.