Abstract

The production of butanol, acetone and ethanol by Clostridium acetobutylicum is a biphasic fermentation process. In the first phase the carbohydrate substrate is metabolized to acetic and butyric acid, in the following second phase the product spectrum is shifted towards the economically interesting solvents. Here we present a cascade of six continuous stirred tank reactors (CCSTR), which allows performing the time dependent metabolic phases of an acetone-butanol-ethanol (ABE) batch fermentation in a spatial domain. Experimental data of steady states under four operating conditions—with variations of the pH in the first bioreactor between 4.3 and 5.6 as well as the total dilution rate between 0.042 h−1 and 0.092 h−1—were used to optimize and validate a corresponding mathematical model. Beyond a residence time distribution representation and substrate, biomass and product kinetics this model also includes the differentiation of cells between the metabolic states. Model simulations predict a final product concentration of 8.2 g butanol L−1 and a productivity of 0.75 g butanol L−1 h−1 in the CCSTR operated at pHbr1 of 4.3 and D = 0.092 h−1, while 31% of the cells are differentiated to the solventogenic state. Aiming at an enrichment of solvent-producing cells, a feedback loop was introduced into the cascade, sending cells from a later state of the process (bioreactor 4) back to an early stage of the process (bioreactor 2). In agreement with the experimental observations, the model accurately predicted an increase in butanol formation rate in bioreactor stages 2 and 3, resulting in an overall butanol productivity of 0.76 g L−1 h−1 for the feedback loop cascade. The here presented CCSTR and the validated model will serve to investigate further ABE fermentation strategies for a controlled metabolic switch.

Highlights

  • Introduction published maps and institutional affilThe acetone-butanol-ethanol (ABE) process is the production of the eponymous solvents by fermentation with solvent-forming Clostridia

  • We await a comeback of the industrial ABE process as the demand for sustainable produced solvents and bulk chemicals is increasing, but butanol is further discussed as a promising biofuel

  • The strain used in this study was Clostridium acetobutylicum DSM 792 obtained from the DSMZ Germany

Read more

Summary

Introduction

The acetone-butanol-ethanol (ABE) process is the production of the eponymous solvents by fermentation with solvent-forming Clostridia. In 1915, Chaim Weizmann established an industrial process for the biotechnological production of acetone (and butanol), which was used all around the world in the following decades before being replaced by a synthesis of these solvents from mineral oil [3,4]. We await a comeback of the industrial ABE process as the demand for sustainable produced solvents and bulk chemicals is increasing, but butanol is further discussed as a promising biofuel. Beside the exploration of new non-food and inexpensive waste materials as substrates for the fermentation process [5,6], an important setscrew to improve the economics of the process is the development of new fermentation technologies [7,8]. These should allow effective raw material conversion with a high yield, accelerate the onset of iations

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.