Abstract

Recently reported plasmon-induced transparency (PIT) in metamaterials endows the optical structures in classical systems with quantum optical effects. In particular, the nonreconfigurable nature in metamaterials makes multifunctional applications of PIT effects in terahertz communications and optical networks remain a great challenge. Here, we present an ultrafast process-selectable modulation of the PIT effect. By incorporating silicon islands into diatomic metamaterials, the PIT effect is modulated reversely, depending on the vertical and horizontal configurations, with giant modulation depths as high as 129% and 109%. Accompanied by the enormous switching of the transparent window, remarkable slow light effect occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.