Abstract
The present paper deals with the identification and maximum likelihood estimation of systems of linear stochastic differential equations using panel data. So we only have a sample of discrete observations over time of the relevant variables for each individual. A popular approach in the social sciences advocates the estimation of the “exact discrete model” after a reparameterization with LISREL or similar programs for structural equations models. The “exact discrete model” corresponds to the continuous time model in the sense that observations at equidistant points in time that are generated by the latter system also satisfy the former. In the LISREL approach the reparameterized discrete time model is estimated first without taking into account the nonlinear mapping from the continuous to the discrete time parameters. In a second step, using the inverse mapping, the fundamental system parameters of the continuous time system in which we are interested, are inferred. However, some severe problems arise wit...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.