Abstract

Visualizing surface-supported and buried planar mesoscale structures, such as nanoelectronics, ultrathin-film quantum dots, photovoltaics, and heterogeneous catalysts, often requires high-resolution X-ray imaging and scattering. Here, we discovered that multibeam scattering in grazing-incident reflection geometry is sensitive to three-dimensional (3D) structures in a single view, which is difficult in conventional scattering or imaging approaches. We developed a 3D finite-element-based multibeam-scattering analysis to decode the heterogeneous electric-field distribution and to faithfully reproduce the complex scattering and surface features. This approach further leads to the demonstration of hard-X-ray Lloyd’s mirror interference of scattering waves, resembling dark-field, high-contrast surface holography under the grazing-angle scattering conditions. A first-principles calculation of the single-view holographic images resolves the surface patterns’ 3D morphology with nanometer resolutions, which is critical for ultrafine nanocircuit metrology. The holographic method and simulations pave the way for single-shot structural characterization for visualizing irreversible and morphology-transforming physical and chemical processes in situ or operando.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.