Abstract
All dsDNA viruses multiply their genome and assemble a procapsid, a protein shell devoid of DNA. The genome is subsequently inserted into the procapsid. The bacterial virus phi29 DNA translocating motor contains a hexameric RNA complex composed of six pRNAs. Recently, we found that pRNA dimers are building blocks of pRNA hexamers. Here, we report the structural probing of pRNA monomers and dimers by chemical modification under native conditions and in the presence or absence of Mg2+. The chemical-modification pattern of the monomer is compared to that of the dimer. The data strongly support the previous secondary-structure prediction of the pRNA concerning the single-stranded areas, including three loops and seven bulges. However, discrepancies between the modification patterns of two predicted helical regions suggest the presence of more complicated, higher-order structure in these areas. It was found that dimers were formed via hand-in-hand and head-to-head contact, as the interacting sequence of the right and left loops and all bases in the head loop were protected from chemical modification. Cryoatomic force microscopy revealed that the monomer displayed a check-mark shape and the dimer exhibited an elongated shape. The dimer was twice as long as the monomer. Direct observation of the shape and measurement of size and thickness of the images strongly support the conclusion from chemical modification concerning the head-to-head contact in dimer formation. Our results also suggest that the role for Mg2+ in pRNA folding is to generate a proper configuration for the right and head loops, which play key roles in this symmetrical head-to-head organization. This explains why Mg2+ plays a critical role in pRNA dimer formation, procapsid binding, and phi29 DNA packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.