Abstract

The interaction between the c(11)ring and the gammaepsilon complex, forming the rotor of the Ilyobacter tartaricus ATP synthase, was probed by surface plasmon resonance spectroscopy and in vitro reconstitution analysis. The results provide, for the first time, a direct and quantitative assessment of the stability of the rotor. The data indicated very tight binding between the c(11)ring and the gammaepsilon complex, with an apparent K(d) value of approximately 7.4nm. The rotor assembly was primarily dependent on the interaction of the cring with the gammasubunit, and binding of the cring to the free epsilon subunit was not observed. Mutagenesis of selected conserved amino acid residues of all three rotor components (cR45, cQ46, gammaE204, gammaF203 and epsilonH38) severely affected rotor assembly. The interaction kinetics between the gammaepsilon complex and c(11)ring mutants suggested that the assembly of the c(11)gammaepsiloncomplex was governed by interactions of low and high affinity. Low-affinity binding was observed between the polar loops of the cring subunits and the bottom part of the gamma subunit. High-affinity interactions, involving the two residues gammaE204 and epsilonH38, stabilized the holo-c(11)gammaepsilon complex. NMR experiments indicated the acquisition of conformational order in otherwise flexible C- and N-terminal regions of the gamma subunit on rotor assembly. The results of this study suggest that docking of the central stalk of the F(1)complex to the rotor ring of F(o) to form tight, but reversible, contacts provides an explanation for the relative ease of dissociation and reconstitution of F(1)F(o)complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.