Abstract

Computational investigations were carried out to probe the potential of several dicoordinate, singly base-stabilized borylenes of the form [L→BR] (L=neutral Lewis base) in dinitrogen binding. The calculated reaction free energies and activation barriers associated with the formation of mono- and diborylene-N2 adducts suggest the presence of thermally surmountable kinetic barriers towards their possible isolation. Our results show that the exergonicity of dinitrogen activation and fixation is linearly dependent on the natural charge at the boron center, which can be tuned to design novel boron-based compounds with potential applications to small-molecule activation. EDA-NOCV analysis reveals strong binding of dinitrogen to these base-stabilized borylenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.