Abstract
The vacuum dynamics of SU(2) lattice gauge theory is studied by means of a gauge-invariant effective action defined using the lattice Schr\"odinger functional. Numerical simulations are performed both at zero and finite temperature. The vacuum is probed using an external constant Abelian chromomagnetic field. The results suggest that at zero temperature the external field is screened in the continuum limit. On the other hand at finite temperature it seems that confinement is restored by increasing the strength of the applied field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.