Abstract

In this study, hybrid composite nanodielectrics of epoxy resin and BaZrO3/BaTiO3 ceramic nanoparticles were prepared via a mixing process varying the filler content. Composites' morphology was studied via scanning electron microscopy, and in all cases, fine nanodispersions were detected. The electrical response of the employed nanofillers, as well as of the produced hybrid composite specimens, was examined by means of broadband dielectric spectroscopy in a wide temperature and frequency range. The thermally varying polarization of the embedded nanoparticles induces functionality to the prepared composite systems, due to the thermally triggered structural transitions of BaZrO3 and BaTiO3. Aiming to investigate these structural transitions, samples were studied by means of X-Ray diffraction with temperature as a parameter. Finally, the ability of the examined nanosystems to store and harvest energy under various conditions was determined and discussed in tandem with the mutual interactions of the occurring physical mechanisms at specific temperature ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.