Abstract

Detailed photophysical studies of the emitting triplet state of the highly phosphorescent compound Pt(dpyb)Cl based on high-resolution optical spectroscopy at cryogenic temperatures are presented {dpyb = N--C(2)--N-coordinated 1,3-di(pyridylbenzene)}. The results reveal a total zero-field splitting of the emitting triplet state T(1) of 10 cm(-1) and relatively short individual decay times for the two higher lying T(1) substates II and III, while the decay time of the lowest substate I is distinctly longer. Further evidence for the assignment of the T(1) substates is gained by emission measurements under high magnetic fields. Distinct differences are observed in the vibrational satellite structures of the emissions from the substates I and II, which are dominated by Herzberg-Teller and Franck-Condon activity, respectively. At T = 1.2 K, the individual spectra of these two substates can be separated by time-resolved spectroscopy. For the most prominent Franck-Condon active modes, Huang-Rhys parameters of S approximately 0.1 can be determined, which are characteristic of very small geometry rearrangements between the singlet ground state and the triplet state T(1). The similar geometries are ascribed to the high rigidity of the Pt(N--C--N) system which, unlike complexes incorporating bidentate phenylpyridine-type ligands and exhibiting similar metal-to-ligand charge transfer admixtures, cannot readily distort from planarity. The results provide new insight into strategies for optimizing the performance of platinum-based emitters for applications such as organic light-emitting diode (OLED) technology and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.