Abstract
Experimentally determined changes in free energy (delta G(o)) for thymine-thymine interactions occurring in oligo(dT).poly(dA) are dependent on the method used for preparation of the double-stranded template. A rapid laser cross-linking technique was used to examine the equilibrium between oligomers of (dT) bound to either poly(dA) or poly(rA). The single-pulse (4-6 nsec) ultraviolet laser excitation of these polynucleotides causes pyrimidine dimer formation between contiguous oligo(dT) molecules, resulting in a "ligation" of the oligomers. Analysis of the resulting data using standard binding isotherms allowed determination of the degree of cooperativity existing between oligomers. Using the cooperativity, delta G(o), delta H(o), and delta S(o) are calculated, thereby providing thermodynamic parameters for this interaction. The measured cooperativity of oligo(dT) molecule interactions allows direct calculation of the number of 3' ends available as nicked structures or the number of 3' ends associated with gaps for oligo(dT).poly(dA) when used as a substrate for DNA synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.