Abstract

The Raman shift, broadening, and relative Raman intensities of bilayer graphene are computed as functions of the electron concentration. We include dynamic effects for the phonon frequencies and we consider the gap induced in the band structure of bilayer graphene by an external electric field. We show that from the analysis of the Raman spectra of gated bilayer graphene it is possible to quantitatively identify the amount of charges coming from the atmosphere and from the substrate. These findings suggest that Raman spectroscopy of bilayer graphene can be used to characterize the electrostatic environment of few-layers graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.