Abstract

We consider probing inhomogeneous waves in the near fields of metallic nanostructures with the aid of a dielectric V-shaped wedge connected to a waveguide. A geometrical model based on the local plane interface approach is proposed to describe the interaction of the wedge with the inhomogeneous field. The fundamental ideas behind the geometrical model are validated by comparison with the results given by rigorous diffraction analysis, and applied to probing plasmonic interference patterns generated by metallic gratings with very narrow slits. The model explains intuitively why a bare wedge with a large apex angle is capable of subwavelength resolution in the spirit of scanning near-field microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.