Abstract

Valence s electrons in alkali- or coinage-metal clusters are conceived to delocalize over the metal frameworks. The electrons occupy so-called superatomic orbitals (SAOs, i.e., 1S, 1P, 1D, 2S, 1F, ...), which provide an essential picture for understanding the size-dependent, unique properties of these metal clusters. While such electronic shells are unambiguously identified in their photoelectron spectra and supported by electronic structure calculations, characterization of SAOs in heteroatom-doped metal clusters has remained elusive as the doping significantly affects its energy levels and even alters the ordering of SAOs. Here, we present a photoelectron imaging study to explore SAOs formed in Sc-doped and undoped silver cluster anions, AgNSc- (N = 15, 16) and AgN- (N = 18, 19). Photoelectron angular distributions from their outermost SAOs are clearly visualized, whose characters are analyzed with the aid of density functional theory calculations. The present methodology enables us to explore not only the quantized energy levels but also the spatial distributions of SAOs formed in various metal cluster anions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.