Abstract
We present a joint experimental and theoretical study on double iron atom doped germanium clusters, Fe2Gen–/0 (n = 3–12). The experimental photoelectron spectra of cluster anions are reasonably reproduced by theoretical simulations. The low-lying structures of the iron-doped semiconductor clusters are obtained by using an ab initio computation-based genetic-algorithm global optimization method. We find that the smaller-sized Fe2Gen– (n = 3–8) clusters adopt bipyramid-based geometries, while the larger ones (n ≥ 9) adopt polyhedral cagelike structures with one interior Fe atom. Interestingly, starting from n = 8, the most stable anionic clusters Fe2Gen– exhibit structures that are different from that of their neutral counterparts Fe2Gen. Robust ferromagnetic interaction is found between the two doped iron atoms in the neutral clusters Fe2Gen, while the total spin moment always remains at 4 μB for all the neutral double iron atom doped germanium clusters up to n = 12. This behavior is in stark contrast to t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.