Abstract

A¹³C(α) chemical exchange saturation transfer based experiment is presented for the study of protein systems undergoing slow interconversion between an 'observable' ground state and one or more 'invisible' excited states. Here a labeling strategy whereby [2-(13)C]-glucose is the sole carbon source is exploited, producing proteins with ¹³C at the C(α) position, while the majority of residues remain unlabeled at CO or C(β). The new experiment is demonstrated with an application to the folding reaction of the Im7 protein that involves an on-pathway excited state. The obtained excited state (13)C(α) chemical shifts are cross validated by comparison to values extracted from analysis of CPMG relaxation dispersion profiles, establishing the utility of the methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.