Abstract
Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM) was used to characterize the local chemical environment at and around the platinum particles in the membrane (PTIM) which form in operationally tested (end-of-life, EOL) catalyst coated membranes (CCMs) of polymer electrolyte membrane fuel cells (PEM-FC). The band of metallic Pt particles in operationally tested CCM membranes was imaged using transmission electron microscopy (TEM). The cathode catalyst layer in the beginning-of-life (BOL) CCMs was fabricated using commercially available catalysts created from Pt precursors with and without nitrogen containing ligands. The surface composition of these catalyst powders was measured by X-ray Photoelectron Spectroscopy (XPS). The local chemical environment of the PTIM in EOL CCMs was found to be directly related to the Pt precursor used in CCM fabrication. STXM chemical mapping at the N 1s edge revealed a characteristic spectrum at and around the dendritic Pt particles in CCMs fabricated with nitrogen containing Pt-precursors. This N 1s spectrum was identical to that of the cathode and different from the membrane. For CCM samples fabricated without nitrogen containing Pt-precursors the N 1s spectrum at the Pt particles was indistinguishable from that of the adjacent membrane. We interpret these observations to indicate that nitrogenous ligands in the nitrogen containing precursors, or decomposition product(s) from that source, are transported together with the dissolved Pt from the cathode into the membrane as a result of the catalyst degradation process. This places constraints on possible mechanisms for the PTIM band formation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.