Abstract
Although the proton was discovered about 100 years ago, its spin structure still remains a mystery. Recent studies suggest that the orbital angular momentum of sea quarks could significantly contribute to the proton's spin. The SeaQuest experiment, which recently completed data collection, probed the unpolarized light quark sea distributions of the proton using the Drell-Yan process. Its successor, the SpinQuest (E1039), will access the $\bar{u}$ and $\bar{d}$ Sivers functions using polarized NH$_3$ and ND$_3$ targets. A non-zero Sivers asymmetry, observed in SpinQuest, would be a strong indication of non-zero sea-quark orbital angular momentum. The SpinQuest experiment can also probe the sea quark's transversity distribution, which is relevant for the determination of proton's tensor charge. Recent study suggests that sea-quarks might contribute significantly to deuteron's tensor polarized structure functions. This can be further probed in SpinQuest using tensor polarized ND$_3$ target. The current status and future plan of the experiment are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.