Abstract
We investigate the utility of PKP coda waves for studying weak scattering from small-scale heterogeneity in the mid-mantle. Coda waves are potentially a useful probe of heterogeneity in the mid-mantle because they are not preferentially scattered near the CMB, as PKP precursors are, but are sensitive to scattering at all depths. PKP coda waves have not been used for this purpose historically because of interference with other late-arriving energy due to near-surface resonance and scattering. Any study of deep mantle scattering using coda waves requires the removal of near-surface effects from the data. We have analyzed 3624 recordings of PKP precursors and coda made by stations in the Incorporated Research Institutions for Seismology (IRIS) Global Seismographic Network (GSN). To study the range and time dependence of the scattered waves, we binned and stacked envelopes of the recordings. We have considered precursors that arrive within a 20 s window before PKP and coda waves in a 60 s window after PKP. The PKP scattered waves increase in amplitude rapidly with range as predicted by scattering theory. At ranges below ∼125°, we predict and observe essentially no scattered energy preceding PKP. Coda amplitudes at these ranges are independent of range and provide an estimate of energy due to near-surface effects that we can expect at all ranges. We use the average coda amplitude at ranges from 120 to 125° to correct coda amplitudes at other ranges. PKP coda waves show a strong dependence on time and range and are clearly influenced by scattering in the lower mantle. PKP coda waves, however, do not provide a tighter constraint on the vertical distribution of mantle heterogeneity than is provided by precursors. This is due, in part, to relatively large scatter in coda amplitudes as revealed by a resampling analysis. Modeling using Rayleigh–Born scattering theory and an exponential autocorrelation function shows that PKP coda amplitudes are not highly sensitive to the vertical distribution of heterogeneity in the mantle. To illustrate this we consider single-scattering in two extreme models of mantle heterogeneity. One allows heterogeneity just at the CMB; the other includes heterogeneity throughout the mantle. The amplitudes of precursors are tightly constrained by our stack and support our earlier conclusion that small-scale heterogeneity is uniformly distributed throughout the lower mantle. The best-fit model includes 8 km scale length heterogeneity with an rms velocity contrast throughout the mantle of 1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.