Abstract

AbstractNarrow-band photometric surveys, such as the Javalambre Photometric Local Universe Survey (J-PLUS), provide not only a means of pre-selection for high-resolution follow-up, but open a new era of precision photometric stellar parameter determination. Using a family of machine learning algorithms known as Artificial Neural Networks (ANNs), we have obtained photometric estimates of effective temperature (Teff) and metallicity ([Fe/H]) across a wide parameter range of temperature and metallicity (4000 < Teff <7000 K; −3.5 <[Fe/H]<0.0) for a number of stars in the J-PLUS Early Data Release. With this methodology, we expect to increase the number of known Carbon-enhanced Metal-poor (CEMP; [C/Fe]>+0.7) stars by several orders of magnitude, as well as constrain the metallicity distribution function of the Milky Way Halo system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.