Abstract

Indium selenide (InSe) exhibits high lattice compressibility and an extraordinary capability of tailoring the optical band gap under pressure beyond other 2D materials. Herein, by applying hydrostatic pressure via a diamond anvil cell, we revealed an anisotropic deformation dynamic and efficient manipulation of near-infrared light emission in thin-layered InSe strongly correlated to layer numbers (N = 5-30). As N > 20, the InSe lattice is compressed in all directions, and the intralayer compression leads to widening of the band gap, resulting in an emission blue shift (∼120 meV at 1.5 GPa). In contrast, as N ≤ 15, an efficient emission red shift is observed from band gap shrinkage (rate of 100 meV GPa-1), which is attributed to the predominant uniaxial interlayer compression because of the high strain resistance along the InSe-diamond interface. These findings advance the understanding of pressure-induced lattice deformation and optical transition evolution in InSe and could be applied to other 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.