Abstract

One of the main impact areas of climate change (CC), and land use and land cover change (LULCC) is the hydrology of watersheds, which have negative implications to the water resources. Their impact can be indicated by changes on streamflow, which is quantifiable using process-based streamflow modelling of baseline and future scenarios. Here we include the uncertainty and associated risk of the streamflow changes for a robust impact assessment to agriculture. We created a baseline model and models of CC and LULCC “impact scenarios” that use: (1) the new climate projections until 2070 and (2) land cover scenarios worsened by forest loss, in a critical watershed in the Philippines. Simulations of peak flows by 26% and low flows by 63% from the baseline model improved after calibrating runoff, soil evaporation, and groundwater parameters. Using the calibrated model, impacts of both CC and LULCC in 2070 were indicated by water deficit (− 18.65%) from May to August and water surplus (12.79%) from November to December. Both CC and LULCC contributed almost equally to the deficit, but the surplus was more LULCC-driven. Risk from CC may affect 9.10% of the croplands equivalent to 0.31 million dollars, while both CC and LULCC doubled the croplands at risk (19.13%, 0.60 million dollars) in one cropping season. The findings warn for the inevitable cropping schedule adjustments in the coming decades, which both apply to irrigated and rainfed crops, and may have implications to crop yields. This study calls for better watershed management to mitigate the risk to crop production and even potential flood risks.

Highlights

  • Impacts of climate change (CC) to the environment have been evident and are forecasted to continue this century and beyond, as mankind is experiencing climate and weather abnormalities indicated by droughts, irregular seasons and extreme typhoons among others (Watson et al 1996)

  • Improvement was higher for Nash–Sutcliffe efficiency (NSE) since it is used as the objective function in SUFI-2

  • According to the Soil and Water Assessment Tool (SWAT) technical documentation (Neitsch et al 2011), a higher curve number (CN2) leads to a higher surface runoff relative to the hydrological response units (HRU); an increase in runoff lag time (SURLAG) increases the fraction of runoff leading to the main stream in a day; and compensating for soil evaporation (ESCO) retains soil moisture

Read more

Summary

Introduction

Impacts of climate change (CC) to the environment have been evident and are forecasted to continue this century and beyond, as mankind is experiencing climate and weather abnormalities indicated by droughts, irregular seasons and extreme typhoons among others (Watson et al 1996). One main impact area of CC is the hydrology of watersheds, where changes in precipitation and temperature directly affect the dynamics and supply of water resources, and eventually the water stakeholders who will struggle to meet their water demands (Arnell 1999). A direct causal factor of climate change is land use and land cover change or LULCC (Dale 1997). LULCC are often driven by socioeconomic pressure and lapses in land use management (Overmars and Verburg 2005). Forest conversion is one of the worst forms of LULCC. Forest loss in the form of deforestation reduce the ecosystem services provided by watersheds, primarily water supply and regulation (Rawlins et al 2017). LULCC and other factors that influence the hydrologic system of watersheds can be modelled

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.