Abstract

Atmospheric turbulence causes degradation in the performance of the freespace optical (FSO) transmission. This turbulence is referred to as scintillation. To mitigate this effect, a multiple input multiple output (MIMO) system is employed. This paper investigates the use of multiple lasers and multiple aperture receivers in severe atmos pheric turbulence when binary pulse position modulation (BPPM)) is employed. First, single input multiple output(SIMO) system using BPPM technique is investigated with equal gain combining (EGC), selection combining (SC), and maximal ratio combining (MRC) diversity schemes. A closed form for the probability of error has been derived for both SC and MRC techniques, as well as Monte Carlo simulations. Then, a MI MO system for both zero forcing (ZF) equalizer and minimum mean square error (MMSE) equalizer is used. Finally, a comparison between different diversity techniques and linear equalizers is carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.