Abstract

Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling (CCLM) for 1961–2000, the simulation ability of CCLM on daily precipitation in China is examined, and the variation of daily precipitation distribution pattern is revealed. By applying the probability distribution and extreme value theory to the projected daily precipitation (2011–2050) under SRES A1B scenario with CCLM, trends of daily precipitation series and daily precipitation extremes are analyzed. Results show that except for the western Qinghai-Tibetan Plateau and South China, distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other; their spatial correlation coefficients are above 0.75. The CCLM can well capture the distribution characteristics of daily precipitation over China. It is projected that in some parts of the Jianghuai region, central-eastern Northeast China and Inner Mongolia, the kurtosis and skewness will increase significantly, and precipitation extremes will increase during 2011–2050. The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions, also show increasing trends of droughts and floods in the next 40 years. CitationCao, L.-G., J. Zhong, B.-D. Su, et al., 2013: Probability distribution and projected trends of daily precipitation in China. Adv. Clim. Change Res., 4(3), doi: 10.3724/SP.J.1248.2013.153.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.