Abstract

Because of its low signal/noise ratio, low contrast and blurry boundaries, ultrasound (US) image segmentation is a difficult task. In this paper, a novel level set-based active contour model is proposed for breast ultrasound (BUS) image segmentation. At first, an energy function is formulated according to the differences between the actual and estimated probability densities of the intensities in different regions. The actual probability densities are calculated directly. For calculating the estimated probability densities, the probability density estimation method and background knowledge are utilized. The energy function is formulated with level set approach, and a partial differential equation is derived for finding the minimum of the energy function. For performing numerical computation, the derived partial differential equation is approximated by the central difference and non-re-initialization approach. The proposed method was operated on both the synthetic images and clinical BUS images for studying its characteristics and evaluating its performance. The experimental results demonstrate that the proposed method can model the BUS images well, be robust to noise, and segment the BUS images accurately and reliably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.