Abstract
Any attempt to introduce probabilities into quantum mechanics faces difficulties due to the mathematical structure of Hilbert space, as reflected in Birkhoff and von Neumann's proposal for a quantum logic. The (consistent or decoherent) histories solution is provided by its single framework rule, an approach that includes conventional (Copenhagen) quantum theory as a special case. Mermin's Ithaca interpretation addresses the same problem by defining probabilities which make no reference to a sample space or event algebra (``correlations without correlata''). But this leads to severe conceptual difficulties, which almost inevitably couple quantum theory to unresolved problems of human consciousness. Using histories allows a sharper quantum description than is possible with a density matrix, suggesting that the latter provides an ensemble rather than an irreducible single-system description as claimed by Mermin. The histories approach satisfies the first five of Mermin's desiderata for a good interpretation of quantum mechanics, including Einstein locality, but the Ithaca interpretation seems to have difficulty with the first (independence of observers) and the third (describing individual systems).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.