Abstract
In numerous data clustering problems, the main priority remains a constant demand on development of new improved algorithmic schemes capable of robust and correct data handling. This requirement has been recently boosted by emerging new technologies in data acquisition area. In image processing and image analysis procedures, the image segmentation procedures have the most important impact on the image analysis results. In data analysis methods, in order to improve understanding and description of data structures, many innovative approaches have been introduced. Data analysis methods always strongly depend upon revealing inherent data structure. In the paper, a new algorithmic Rough Entropy Framework - (REF, in short) has been applied in the probabilistic setting. Crisp and Fuzzy RECA measures (Rough Entropy Clustering Algorithm) introduced in [5] are extended into probability area. The basic rough entropy notions, the procedure of rough (entropy) measure calculations and examples of probabilistic approximations have been presented and supported by comparison to crisp and fuzzy rough entropy measures. In this way, uncertainty measures have been combined with probabilistic procedures in order to obtain better insight into data internal structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.