Abstract

Evolutionary algorithms (EAs) excel in optimizing systems with a large number of variables. Previous mathematical and empirical studies have shown that opposition-based algorithms can improve EA performance. We review existing opposition-based algorithms and introduce a new one. The proposed algorithm is named fitness-based quasi-reflection and employs the relative fitness of solution candidates to generate new individuals. We provide the probabilistic analysis to prove that among all the opposition-based methods that we investigate, fitness-based quasi-reflection has the highest probability of being closer to the solution of an optimization problem. We support our theoretical findings via Monte Carlo simulations and discuss the use of different reflection weights. We also demonstrate the benefits of fitness-based quasi-reflection on three state-of-the-art EAs that have competed at IEEE CEC competitions. The experimental results illustrate that fitness-based quasi-reflection enhances EA performance, particularly on problems with more challenging solution spaces. We found that competitive DE (CDE) which was ranked tenth in CEC 2013 competition benefited the most from opposition. CDE with fitness-based quasi-reflection improved on 21 out of the 28 problems in the CEC 2013 test suite and achieved 100% success rate on seven more problems than CDE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.