Abstract
This paper concerns labelled Markov processes (LMPs), probabilistic models over uncountable state spaces originally introduced by Prakash Panangaden and colleagues. Motivated by the practical application of the LMP framework, we study its formal semantics and the relationship to similar models formulated in control theory. We consider notions of (exact and approximate) probabilistic bisimulation over LMPs and, drawing on methods from both formal verification and control theory, propose a simple technique to compute an approximate probabilistic bisimulation of a given LMP, where the resulting abstraction is characterised as a finite-state labelled Markov chain (LMC). This construction enables the application of automated quantitative verification and policy synthesis techniques over the obtained abstract model, which can be used to perform approximate analysis of the concrete LMP. We illustrate this process through a case study of a multi-room heating system that employs the probabilistic model checker PRISM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.