Abstract

PurposeThe purpose of this paper is to present a new cumulant-based method, based on the properties of saddle-point approximation (SPA), to solve the probabilistic load flow (PLF) problem for distribution networks with wind generation.Design/methodology/approachThis technique combines cumulant properties with the SPA to improve the analytical approach of PLF calculation. The proposed approach takes into account the load demand and wind generation uncertainties in distribution networks, where a suitable probabilistic model of wind turbine (WT) is used.FindingsThe proposed procedure is applied to IEEE 33-bus distribution test system, and the results are discussed. The output variables, with and without WT connection, are presented for normal and gamma random variables (RVs). The case studies demonstrate that the proposed method gives accurate results with relatively low computational burden even for non-Gaussian probability density functions.Originality/valueThe main contribution of this paper is the use of SPA for the reconstruction of probability density function or cumulative distribution function in the PLF problem. To confirm the validity of the method, results are compared with Monte Carlo simulation and Gram–Charlier expansion results. From the viewpoint of accuracy and computational cost, SPA almost surpasses other approximations for obtaining the cumulative distribution function of the output RVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.