Abstract
For dealing with uncertainty in Remaining Useful Life (RUL) predictions, numerous studies in literature use stochastic models to characterize the degradation process and predict the RUL distribution. However, in practice, it is difficult to derive stochastic models to capture degradation mechanisms of complex physical systems. Besides, the outstanding achievements in sensing technologies have facilitated the development of data-driven methods. Among them, deep learning methods become one of the most popular trends in recent studies; but they usually provide point predictions without quantifying the output uncertainties. In this paper, we present a new probabilistic deep leaning methodology for uncertainty quantification of multi-component systems’ RUL. It is a combination of a probabilistic model and a deep recurrent neural network to predict the components’ RUL distributions. Then, using the information about the system’s architecture, the formulas to quantify system reliability or system-level-RUL uncertainty are derived. The performance of the proposed methodology is investigated through the benchmark data provided by NASA. The obtained results highlight the point prediction accuracy and the uncertainty management capacity of the proposed methodology. In addition, thanks to the explicit RUL distributions of components, the system reliability for different structures is obtained with high accuracy, especially for series structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.