Abstract

ObjectivesPopulation‐level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data‐driven manner, leading to uncertainty when classifying low‐titer responses. To improve upon this, we evaluated cutoff‐independent methods for their ability to assign likelihood of SARS‐CoV‐2 seropositivity to individual samples.MethodsUsing robust ELISAs based on SARS‐CoV‐2 spike (S) and the receptor‐binding domain (RBD), we profiled antibody responses in a group of SARS‐CoV‐2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines‐linear discriminant analysis learner (SVM‐LDA) suited for this purpose.ResultsIn the training data from confirmed ancestral SARS‐CoV‐2 infections, 99% of participants had detectable anti‐S and ‐RBD IgG in the circulation, with titers differing > 1000‐fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3‐6SD from the mean of pre‐pandemic negative controls (n = 595). In contrast, SVM‐LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50–99% likelihood, and 4.0% (n = 203) to have a 10–49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD‐based methods, such tools allow for more statistically‐sound seropositivity estimates in large cohorts.ConclusionProbabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.