Abstract
Abstract Analytical target cascading (ATC) is a methodology for hierarchical multilevel system design optimization. In previous work, the deterministic ATC formulation was extended to account for random variables represented by expected values to be matched among subproblems and thus ensure design consistency. In this work, the probabilistic formulation is augmented to allow the introduction and matching of additional probabilistic characteristics. A particular probabilistic analytical target cascading (PATC) formulation is proposed that matches the first two moments of interrelated responses and linking variables. Several implementation issues are addressed, including representation of probabilistic design targets, matching responses and linking variables under uncertainty, and coordination strategies. Analytical and simulation-based optimal design examples are used to illustrate the new formulation. The accuracy of the proposed PATC formulation is demonstrated by comparing PATC results to those obtained using a probabilistic all-in-one formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.