Abstract
This paper presents an efficient probabilistic analysis method for predicting component reliability of structural/mechanical systems subject to random loads, material properties, and geometry. The proposed method involves High Dimensional Model Representation (HDMR) for the limit state/performance function approximation and fast Fourier transform for solving the convolution integral. The limit state/performance function approximation is obtained by linear and quadratic approximations of the first-order HDMR component functions at most probable point. In the proposed method, efforts are required in evaluating conditional responses at a selected input determined by sample points, as compared to full-scale simulation methods. Therefore, the proposed technique estimates the failure probability accurately with significantly less computational effort compared to the direct Monte Carlo simulation. The methodology developed is applicable for structural reliability estimation involving any number of random variables with any kind of distribution. The accuracy and efficiency of the proposed method is demonstrated through five examples involving explicit/implicit performance functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Computational Methods in Engineering Science and Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.