Abstract

Internal erosion, or piping, has been attributed as a major cause of dam and embankment failures. Most prediction models for predicting piping use the hydraulic gradient between the upstream and downstream water levels as an indicator. No explicit consideration is made regarding preferential pathways, although piping usually initiates from a discrete downstream location. The local seepage velocity is investigated here through stochastic seepage analysis incorporating consideration of soil heterogeneity. The results show that when the coefficient of variation of hydraulic conductivity is small, the location of the maximum local velocity is typically near the downstream toe of the embankment, as for a deterministic analysis. In contrast, increasing the coefficient of variation scatters the possible locations of the maximum local velocity. The heterogeneity of hydraulic conductivity also leads to an increase in the average exit hydraulic gradient, as well as having a significant influence on the global kinetic energy and kinetic energy distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.