Abstract
The purpose of this paper is to generalise Sullivan's rational homotopy theory to non-nilpotent spaces, providing an alternative approach to defining Toen's schematic homotopy types over any field k of characteristic zero. New features include an explicit description of homotopy groups using the Maurer-Cartan equations, convergent spectral sequences comparing schematic homotopy groups with cohomology of the universal semisimple local system, and a generalisation of the Baues-Lemaire conjecture. For compact Kaehler manifolds, the schematic homotopy groups can be described explicitly in terms of this cohomology ring, giving canonical weight decompositions. There are also notions of minimal models, unpointed homotopy types and algebraic automorphism groups. For a space with algebraically good fundamental group and higher homotopy groups of finite rank, the schematic homotopy groups are shown to be \pi_n(X)\otimes k.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.