Abstract
This paper presents a novel approach for robot navigation in crowded urban environments where people and objects are moving simultaneously while a robot is navigating. Avoiding moving obstacles at their corresponding precise moment motivates the use of a robotic planner satisfying both dynamic and nonholonomic constraints, also referred as kynodynamic constraints.We present a proactive navigation approach with respect its environment, in the sense that the robot calculates the reaction produced by its actions and provides the minimum impact on nearby pedestrians. As a consequence, the proposed planner integrates seamlessly planning and prediction and calculates a complete motion prediction of the scene for each robot propagation. Making use of the Extended Social Force Model (ESFM) allows an enormous simplification for both the prediction model and the planning system under differential constraints. Simulations and real experiments have been carried out to demonstrate the success of the proactive kinodynamic planner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.