Abstract

Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.