Abstract
Ensuring the safe, reliable, and energy-efficient provision of electricity is a complex task for smart grid (SG) management applications. Internet of Things (IoT) and edge computing-based SG applications have been proposed for time-responsive monitoring and controlling tasks related to power systems. Recent studies have provided valuable insights into the potential of machine learning algorithms in SGs, covering areas such as generation, distribution, microgrids, consumer energy market, and cyber security. Integrated IoT devices directly exchange data with the SG cloud, which increases the vulnerability and security threats to the energy system. The review aims to provide a comprehensive analysis of privacy-preserving machine learning (PPML) applications in IoT-Integrated SGs, focusing on non-intrusive load monitoring, fault detection, demand forecasting, generation forecasting, energy-management systems, anomaly detection, and energy trading. The study also highlights the importance of data privacy and security when integrating these applications to enable intelligent decision-making in smart grid domains. Furthermore, the review addresses performance issues (e.g., accuracy, latency, and resource constraints) associated with PPML techniques, which may impact the security and overall performance of IoT-integrated SGs. The insights of this study will provide essential guidelines for in-depth research in the field of IoT-integrated smart grid privacy and security in the future.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have