Abstract

To improve the efficiency of big data feature learning, the paper proposes a privacy preserving deep computation model by offloading the expensive operations to the cloud. Privacy concerns become evident because there are a large number of private data by various applications in the smart city, such as sensitive data of governments or proprietary information of enterprises. To protect the private data, the proposed model uses the BGV encryption scheme to encrypt the private data and employs cloud servers to perform the high-order back-propagation algorithm on the encrypted data efficiently for deep computation model training. Furthermore, the proposed scheme approximates the Sigmoid function as a polynomial function to support the secure computation of the activation function with the BGV encryption. In our scheme, only the encryption operations and the decryption operations are performed by the client while all the computation tasks are performed on the cloud. Experimental results show that our scheme is improved by approximately 2.5 times in the training efficiency compared to the conventional deep computation model without disclosing the private data using the cloud computing including ten nodes. More importantly, our scheme is highly scalable by employing more cloud servers, which is particularly suitable for big data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.