Abstract

In recent years, there has been considerable research interest in the design of survivable wavelength division multiplexing (WDM) networks. Many papers have proposed mixed-integer linear program (MILP) formulations as well as heuristics to optimally allocate lightpaths, using protection based schemes. Such schemes provide quick and guaranteed recovery, but do not use resources efficiently. About 50% of allocated resources remain idle, under fault-free conditions. If these “idle” resources were used for low-priority connections (which could be pre-empted if necessary), the resource utilization would improve significantly. This paper introduces two MILP formulations for priority-based dynamic lightpath allocation in survivable WDM networks. We define three different levels of service and allocate resources based on the requested service level. An important advantage of our approach is that while we can handle multiple levels of service, the traditional (single level) shared and dedicated path protection schemes can be treated simply as a special case of the proposed formulations. The first formulation solves the problem optimally, but is quite time consuming. The second formulation makes some simplifications, and is more efficient. The results demonstrate that our approach can significantly improve resource utilization and is feasible for practical sized networks, particularly under low- to medium-traffic load. For large networks and high traffic conditions, simpler heurtistic algorithms are more appropriate. In such cases, the proposed MILP formulation can be a useful tool to validate the performance of the heuristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.