Abstract

In order to extract the priori information (PI) provided by real monitored values of peak particle velocity (PPV) and increase the prediction accuracy of PPV, PI based support vector regression (SVR) is established. Firstly, to extract the PI provided by monitored data from the aspect of mathematics, the probability density of PPV is estimated withε-SVR. Secondly, in order to make full use of the PI about fluctuation of PPV between the maximal value and the minimal value in a certain period of time, probability density estimated withε-SVR is incorporated into training data, and then the dimensionality of training data is increased. Thirdly, using the training data with a higher dimension, a method of predicting PPV called PI-ε-SVR is proposed. Finally, with the collected values of PPV induced by underwater blasting at Dajin Island in Taishan nuclear power station in China, contrastive experiments are made to show the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.