Abstract

Prion diseases are fatal neurodegenerative disorders characterized by the cellular prion protein (PrPC) conversion into a misfolded and infectious isoform termed prion or PrPSc. The neuropathological mechanism underlying prion toxicity is still unclear, and the debate on prion protein gain- or loss-of-function is still open. PrPC participates to a plethora of physiological mechanisms. For instance, PrPC and copper cooperatively modulate N-methyl-D-aspartate receptor (NMDAR) activity by mediating S-nitrosylation, an inhibitory post-translational modification, hence protecting neurons from excitotoxicity. Here, NMDAR S-nitrosylation levels were biochemically investigated at pre- and post-symptomatic stages of mice intracerebrally inoculated with RML, 139A, and ME7 prion strains. Neuropathological aspects of prion disease were studied by histological analysis and proteinase K digestion. We report that hippocampal NMDAR S-nitrosylation is greatly reduced in all three prion strain infections in both pre-symptomatic and terminal stages of mouse disease. Indeed, we show that NMDAR S-nitrosylation dysregulation affecting prion-inoculated animals precedes the appearance of clinical signs of disease and visible neuropathological changes, such as PrPSc accumulation and deposition. The pre-symptomatic reduction of NMDAR S-nitrosylation in prion-infected mice may be a possible cause of neuronal death in prion pathology, and it might contribute to the pathology progression opening new therapeutic strategies against prion disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.