Abstract

The need to develop electronic skin (e-skin) for robotics is essential to provide a sense of touch on a large area, the same as human skin. This paper reports the design and development of printed e-skin force sensor arrays. The performance analysis of these capacitive force sensor arrays showed a resolution of 2.5 sq. mm, localization accuracy of 99% and a sensitivity of 0.53 pF/N. The sensor patches provided significant force sensitivity and stable loading and unloading for static force. A graphical user interface is developed in open-source python software. An unsupervised machine learning algorithm trains the tactile e-skin system for different user styles to distinguish the cluster of lower and higher touch angles for improving accuracy. The proposed e-skin sensor finds application in large-area sensors and gripper pads for prosthetics in biomedical devices where the sense of touch and high resolution is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.