Abstract

AbstractA novel approach to leverage the extraordinary properties of graphene for designing thin film strain sensors is demonstrated. Graphene nanosheets (GNS) are produced from graphite by a liquid phase exfoliation (LPE) method using water along with N‐methylpyrrolidinone (NMP) as cosolvents. It is found that the water‐NMP solvent system enhances the exfoliation yield and the stability of the GNS dispersion, thereby lowering the number of defects in the GNS basal plane. Both LPE‐based GNS and reduced graphene oxide (RGO) are synthesized for fabricating thin film strain sensors and for comparison purposes. Detailed micro‐Raman, X‐ray photoelectron spectroscopy, and transmission electron microscopy studies indicate that the as‐produced GNS exhibits lower defects than RGO nanosheets. The strain sensing study reveals that strain sensors fabricated using low‐defect GNS exhibit enhanced electrical and electromechanical properties, including higher electrical conductivity, lower noise floor, and more stable electromechanical response as compared to RGO‐based sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.